MIT engineers design tiny batteries for powering cell-sized robots (2024)

A tiny battery designed by MIT engineers could enable the deployment of cell-sized, autonomous robots for drug delivery within in the human body, as well as other applications such as locating leaks in gas pipelines.

The new battery, which is 0.1 millimeters long and 0.002 millimetersthick — roughly the thickness of a human hair — can capture oxygen from air and use it to oxidize zinc, creating a current of up to 1 volt. That is enough to power a small circuit, sensor, or actuator, the researchers showed.

“We think this is going to be very enabling for robotics,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study. “We’re building robotic functions onto the battery and starting to put these components together into devices.”

Ge Zhang PhD ’22 and Sungyun Yang, an MIT graduate student,are the lead author of the paper, which appears in Science Robotics.

Powered by batteries

For several years, Strano’s lab has been working on tiny robots that can sense and respond to stimuli in their environment. One of the major challenges in developing such tiny robots is making sure that they have enough power.

Other researchers have shown that they can power microscale devices using solar power, but the limitation to that approach is that the robots must have a laser or another light source pointed at them at all times. Such devices are known as “marionettes” because they are controlled by an external power source. Putting a power source such as a battery inside these tiny devices could free them to roam much farther.

“The marionette systems don’t really need a battery because they’re getting all the energy they need from outside,” Strano says. “But if you want a small robot to be able to get into spaces that you couldn’t access otherwise, it needs to have a greater level of autonomy. A battery is essential for something that’s not going to be tethered to the outside world.”

To create robots that could become more autonomous, Strano’s lab decided to use a type of battery known as a zinc-air battery. These batteries, which have a longer lifespan than many other types of batteries due to their high energy density, are often used in hearing aids.

The battery that they designed consists of a zinc electrode connected to a platinum electrode, embedded into a strip of a polymer called SU-8, which is commonly used for microelectronics. When these electrodes interact with oxygen molecules from the air, the zinc becomes oxidized and releases electrons that flow to the platinum electrode, creating a current.

In this study, the researchers showed that this battery could provide enough energy to power an actuator — in this case, a robotic arm that can be raised and lowered. The battery could also power a memristor, an electrical component that can store memories of events by changing its electrical resistance, and a clock circuit, which allows robotic devices to keep track of time.

The battery also provides enough power to run two different types of sensors that change their electrical resistance when they encounter chemicals in the environment. One of the sensors is made from atomically thin molybdenum disulfide and the other from carbon nanotubes.

“We’re making the basic building blocks in order to build up functions at the cellular level,” Strano says.

Robotic swarms

In this study, the researchers used a wire to connect their battery to an external device, but in future work they plan to build robots in which the battery is incorporated into a device.

“This is going to form the core of a lot of our robotic efforts,” Strano says. “You can build a robot around an energy source, sort of like you can build an electric car around the battery.”

One of those efforts revolves around designing tiny robots that could be injected into the human body, where they could seek out a target site and then release a drug such as insulin. For use in the human body, the researchers envision that the devices would be made of biocompatible materials that would break apart once they were no longer needed.

The researchers are also working on increasing the voltage of the battery, which may enable additional applications.

The research was funded by the U.S. Army Research Office, the U.S. Department of Energy, the National Science Foundation, and a MathWorks Engineering Fellowship.

MIT engineers design tiny batteries for powering cell-sized robots (2024)
Top Articles
We Tried It: F45 Training, the Fitness Franchise Backed by Mark Wahlberg with Locations Near You
F45 Training San Diego East Village | Team Training | Sign Up Today
Dainty Rascal Io
Global Foods Trading GmbH, Biebesheim a. Rhein
Umbc Baseball Camp
Sprinter Tyrone's Unblocked Games
Skycurve Replacement Mat
Http://N14.Ultipro.com
Gore Videos Uncensored
Owatc Canvas
Victoria Secret Comenity Easy Pay
Publix 147 Coral Way
shopping.drugsourceinc.com/imperial | Imperial Health TX AZ
18443168434
Reddit Wisconsin Badgers Leaked
Help with Choosing Parts
Springfield Mo Craiglist
How to find cash from balance sheet?
National Weather Service Denver Co Forecast
Troy Bilt Mower Carburetor Diagram
Willam Belli's Husband
Hennens Chattanooga Dress Code
Kaitlyn Katsaros Forum
The Largest Banks - ​​How to Transfer Money With Only Card Number and CVV (2024)
Gina Wilson All Things Algebra Unit 2 Homework 8
Www.craigslist.com Savannah Ga
Woodmont Place At Palmer Resident Portal
Ac-15 Gungeon
Project Reeducation Gamcore
Encyclopaedia Metallum - WikiMili, The Best Wikipedia Reader
Anonib Oviedo
Dal Tadka Recipe - Punjabi Dhaba Style
San Jac Email Log In
Skepticalpickle Leak
1964 Impala For Sale Craigslist
Ewg Eucerin
Darktide Terrifying Barrage
Bad Business Private Server Commands
Mumu Player Pokemon Go
Clearvue Eye Care Nyc
Babylon 2022 Showtimes Near Cinemark Downey And Xd
Michael Jordan: A timeline of the NBA legend
Atlanta Musicians Craigslist
Registrar Lls
Lovely Nails Prices (2024) – Salon Rates
Hanco*ck County Ms Busted Newspaper
Killer Intelligence Center Download
Mega Millions Lottery - Winning Numbers & Results
Freightliner Cascadia Clutch Replacement Cost
Jeep Forum Cj
Jovan Pulitzer Telegram
Latest Posts
Article information

Author: Stevie Stamm

Last Updated:

Views: 6076

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Stevie Stamm

Birthday: 1996-06-22

Address: Apt. 419 4200 Sipes Estate, East Delmerview, WY 05617

Phone: +342332224300

Job: Future Advertising Analyst

Hobby: Leather crafting, Puzzles, Leather crafting, scrapbook, Urban exploration, Cabaret, Skateboarding

Introduction: My name is Stevie Stamm, I am a colorful, sparkling, splendid, vast, open, hilarious, tender person who loves writing and wants to share my knowledge and understanding with you.